Summarise and annotate data
Usage
bru_summarise(
data,
probs = c(0.025, 0.5, 0.975),
x = NULL,
cbind.only = FALSE,
max_moment = 2
)
Arguments
- data
A list of samples, each either numeric or a
data.frame
- probs
A numeric vector of probabilities with values in
[0, 1]
, passed tostats::quantile
- x
A
data.frame
of data columns that should be added to the summary data frame- cbind.only
If TRUE, only
cbind
the samples and return a matrix where each column is a sample- max_moment
integer, at least 2. Determines the largest moment order information to include in the output. If
max_moment > 2
, includes "skew" (skewness,E[(x-m)^3/s^3]
), and ifmax_moment > 3
, includes "ekurtosis" (excess kurtosis,E[(x-m)^4/s^4] - 3
). Default 2. Note that the Monte Carlo variability of theekurtois
estimate may be large.
Value
A data.frame
or Spatial[Points/Pixels]DataFrame
with summary
statistics, "mean", "sd", paste0("q", probs)
, "mean.mc_std_err",
"sd.mc_std_err"
Examples
bru_summarise(matrix(rexp(10000), 10, 1000), max_moment = 4, probs = NULL)
#> mean sd skew ekurtosis sd.mc_std_err mean.mc_std_err
#> 1 1.0029219 1.0180685 2.168457 7.227269 0.04890246 0.03528701
#> 2 0.9503748 0.9268824 1.628765 2.808271 0.03214249 0.03134347
#> 3 0.9952103 0.9976464 2.027045 6.272503 0.04537511 0.03441812
#> 4 1.0110376 0.9633573 1.709907 3.634341 0.03616230 0.03275114
#> 5 0.9728174 0.9628626 1.674162 3.040448 0.03418654 0.03261053
#> 6 1.0152796 1.0680488 2.306443 7.677520 0.05253976 0.03709758
#> 7 0.9568688 0.9386959 2.008675 5.742233 0.04130325 0.03229642
#> 8 1.0640714 1.0513956 1.863190 4.760622 0.04323085 0.03598221
#> 9 1.0539425 1.1238265 2.332324 8.150454 0.05661804 0.03911935
#> 10 1.0280436 0.9886699 1.630193 2.839146 0.03439501 0.03343982