Summarise and annotate data
Usage
bru_summarise(
data,
probs = c(0.025, 0.5, 0.975),
x = NULL,
cbind.only = FALSE,
max_moment = 2
)
Arguments
- data
A list of samples, each either numeric or a
data.frame
- probs
A numeric vector of probabilities with values in
[0, 1]
, passed tostats::quantile
- x
A
data.frame
of data columns that should be added to the summary data frame- cbind.only
If TRUE, only
cbind
the samples and return a matrix where each column is a sample- max_moment
integer, at least 2. Determines the largest moment order information to include in the output. If
max_moment > 2
, includes "skew" (skewness,E[(x-m)^3/s^3]
), and ifmax_moment > 3
, includes "ekurtosis" (excess kurtosis,E[(x-m)^4/s^4] - 3
). Default 2. Note that the Monte Carlo variability of theekurtois
estimate may be large.
Value
A data.frame
or Spatial[Points/Pixels]DataFrame
with summary
statistics, "mean", "sd", paste0("q", probs)
, "mean.mc_std_err",
"sd.mc_std_err"
Examples
bru_summarise(matrix(rexp(10000), 10, 1000), max_moment = 4, probs = NULL)
#> mean sd skew ekurtosis sd.mc_std_err mean.mc_std_err
#> 1 1.0029053 1.0172244 2.178827 7.268681 0.04897141 0.03526468
#> 2 0.9535002 0.9200231 1.587923 2.649969 0.03137525 0.03107803
#> 3 0.9989811 0.9978925 2.017936 6.236392 0.04528715 0.03442034
#> 4 1.0112974 0.9646196 1.703112 3.601604 0.03610438 0.03278739
#> 5 0.9754490 0.9624091 1.673209 3.037352 0.03415994 0.03259451
#> 6 1.0055346 1.0571036 2.310578 7.825628 0.05239767 0.03674247
#> 7 0.9595199 0.9441211 1.984422 5.567403 0.04107037 0.03245325
#> 8 1.0632556 1.0494500 1.868521 4.802360 0.04328381 0.03592403
#> 9 1.0531084 1.1236150 2.332426 8.157151 0.05662605 0.03911317
#> 10 1.0303214 0.9924695 1.619712 2.774731 0.03429673 0.03355376