Summarise and annotate data
Usage
bru_summarise(
data,
probs = c(0.025, 0.5, 0.975),
x = NULL,
cbind.only = FALSE,
max_moment = 2
)Arguments
- data
A list of samples, each either numeric or a
data.frame- probs
A numeric vector of probabilities with values in
[0, 1], passed tostats::quantile- x
A
data.frameof data columns that should be added to the summary data frame- cbind.only
If TRUE, only
cbindthe samples and return a matrix where each column is a sample- max_moment
integer, at least 2. Determines the largest moment order information to include in the output. If
max_moment > 2, includes "skew" (skewness,E[(x-m)^3/s^3]), and ifmax_moment > 3, includes "ekurtosis" (excess kurtosis,E[(x-m)^4/s^4] - 3). Default 2. Note that the Monte Carlo variability of theekurtoisestimate may be large.
Value
A data.frame or Spatial[Points/Pixels]DataFrame with summary
statistics, "mean", "sd", paste0("q", probs), "mean.mc_std_err",
"sd.mc_std_err"
Examples
bru_summarise(matrix(rexp(10000), 10, 1000), max_moment = 4, probs = NULL)
#> mean sd skew mean.mc_std_err sd.mc_std_err ekurtosis
#> 1 1.0050534 1.0195641 2.170097 0.03533472 0.04890899 7.202670
#> 2 0.9519697 0.9268446 1.624580 0.03133999 0.03210639 2.797863
#> 3 0.9970469 0.9970097 2.026603 0.03439748 0.04536699 6.280112
#> 4 1.0131649 0.9639471 1.702418 0.03276535 0.03609214 3.605621
#> 5 0.9747426 0.9622593 1.672917 0.03259019 0.03416647 3.040846
#> 6 1.0068025 1.0550962 2.316933 0.03668335 0.05246657 7.889020
#> 7 0.9582877 0.9409593 1.998839 0.03236152 0.04120082 5.666845
#> 8 1.0636858 1.0498080 1.865887 0.03593399 0.04326234 4.790975
#> 9 1.0529362 1.1242614 2.331727 0.03913300 0.05661630 8.141976
#> 10 1.0313465 0.9896316 1.618757 0.03346307 0.03428182 2.797992