Summarise and annotate data
Usage
bru_summarise(
data,
probs = c(0.025, 0.5, 0.975),
x = NULL,
cbind.only = FALSE,
max_moment = 2
)
Arguments
- data
A list of samples, each either numeric or a
data.frame
- probs
A numeric vector of probabilities with values in
[0, 1]
, passed tostats::quantile
- x
A
data.frame
of data columns that should be added to the summary data frame- cbind.only
If TRUE, only
cbind
the samples and return a matrix where each column is a sample- max_moment
integer, at least 2. Determines the largest moment order information to include in the output. If
max_moment > 2
, includes "skew" (skewness,E[(x-m)^3/s^3]
), and ifmax_moment > 3
, includes "ekurtosis" (excess kurtosis,E[(x-m)^4/s^4] - 3
). Default 2. Note that the Monte Carlo variability of theekurtois
estimate may be large.
Value
A data.frame
or Spatial[Points/Pixels]DataFrame
with summary
statistics, "mean", "sd", paste0("q", probs)
, "mean.mc_std_err",
"sd.mc_std_err"
Examples
bru_summarise(matrix(rexp(10000), 10, 1000), max_moment = 4, probs = NULL)
#> mean sd skew ekurtosis sd.mc_std_err mean.mc_std_err
#> 1 1.0108903 0.9649274 1.702008 3.596846 0.03610056 0.03279688
#> 2 0.9751009 0.9626591 1.672421 3.034074 0.03415770 0.03260228
#> 3 1.0063036 1.0566728 2.312000 7.835825 0.05240348 0.03672921
#> 4 0.9588076 0.9443360 1.985021 5.565812 0.04107540 0.03246036
#> 5 1.0644205 1.0493831 1.865895 4.795969 0.04326072 0.03592046
#> 6 1.0545010 1.1236405 2.329021 8.144608 0.05659237 0.03911185
#> 7 1.0302886 0.9924727 1.619795 2.774872 0.03429734 0.03355390
#> 8 1.0029053 1.0172244 2.178827 7.268681 0.04897141 0.03526468
#> 9 0.9535002 0.9200231 1.587923 2.649969 0.03137525 0.03107803
#> 10 0.9989811 0.9978925 2.017936 6.236392 0.04528715 0.03442034