Summarise and annotate data
Usage
bru_summarise(
data,
probs = c(0.025, 0.5, 0.975),
x = NULL,
cbind.only = FALSE,
max_moment = 2
)
Arguments
- data
A list of samples, each either numeric or a
data.frame
- probs
A numeric vector of probabilities with values in
[0, 1]
, passed tostats::quantile
- x
A
data.frame
of data columns that should be added to the summary data frame- cbind.only
If TRUE, only
cbind
the samples and return a matrix where each column is a sample- max_moment
integer, at least 2. Determines the largest moment order information to include in the output. If
max_moment > 2
, includes "skew" (skewness,E[(x-m)^3/s^3]
), and ifmax_moment > 3
, includes "ekurtosis" (excess kurtosis,E[(x-m)^4/s^4] - 3
). Default 2. Note that the Monte Carlo variability of theekurtois
estimate may be large.
Value
A data.frame
or Spatial[Points/Pixels]DataFrame
with summary
statistics, "mean", "sd", paste0("q", probs)
, "mean.mc_std_err",
"sd.mc_std_err"
Examples
bru_summarise(matrix(rexp(10000), 10, 1000), max_moment = 4, probs = NULL)
#> mean sd skew ekurtosis sd.mc_std_err mean.mc_std_err
#> 1 0.9995932 1.0149492 2.189996 7.361487 0.04910584 0.03520124
#> 2 0.9540890 0.9201174 1.585627 2.643641 0.03135712 0.03107987
#> 3 0.9980144 0.9979156 2.020478 6.243391 0.04530744 0.03442236
#> 4 1.0114649 0.9645428 1.703108 3.602452 0.03610424 0.03278495
#> 5 0.9753642 0.9624584 1.673127 3.036774 0.03415974 0.03259606
#> 6 1.0063036 1.0566728 2.312000 7.835825 0.05240348 0.03672921
#> 7 0.9588076 0.9443360 1.985021 5.565812 0.04107540 0.03246036
#> 8 1.0644205 1.0493831 1.865895 4.795969 0.04326072 0.03592046
#> 9 1.0545010 1.1236405 2.329021 8.144608 0.05659237 0.03911185
#> 10 1.0302886 0.9924727 1.619795 2.774872 0.03429734 0.03355390