Compute inlabru model linearisation information
Usage
bru_compute_linearisation(...)
# S3 method for class 'component'
bru_compute_linearisation(
cmp,
model,
lhood_expr,
data,
input,
state,
comp_simple,
effects,
pred0,
used,
allow_combine,
eps,
n_pred = NULL,
...,
options = NULL
)
# S3 method for class 'bru_like'
bru_compute_linearisation(
lhood,
model,
data,
input,
state,
comp_simple,
eps,
...
)
# S3 method for class 'bru_like_list'
bru_compute_linearisation(
lhoods,
model,
input,
state,
comp_simple,
eps = 1e-05,
...
)
# S3 method for class 'bru_model'
bru_compute_linearisation(model, lhoods, input, state, comp_simple, ...)
Arguments
- ...
Parameters passed on to other methods
- cmp
A bru_component object
- model
A
bru_model
object- lhood_expr
A predictor expression
- data
Input data
- input
Precomputed component inputs from
evaluate_inputs()
- state
The state information, as a list of named vectors
- comp_simple
Component evaluation information
For
bru_component
:bru_mapper_taylor
objectFor
bru_like
: Acomp_simple_list
object for the components in the likelihoodFor
bru_like_list
: Acomp_simple_list_list
object
- effects
For
bru_component
: Precomputed effect list for all components involved in the likelihood expression
- pred0
Precomputed predictor for the given state
- used
A
bru_used()
object for the predictor expression- allow_combine
logical; If
TRUE
, the predictor expression may involve several rows of the input data to influence the same row.- eps
The finite difference step size
- n_pred
The length of the predictor expression. If not
NULL
, scalar predictor evaluations are expanded to vectors of lengthn_pred
.- options
A
bru_options
object. The log verbosity options are used.- lhood
A
bru_like
object- lhoods
A
bru_like_list
object